Development of the FUN-1 family of fluorescent probes for vacuole labeling and viability testing of yeasts.
نویسندگان
چکیده
A new family of fluorescent probes has been developed for assessing the viability and metabolic activity of yeasts. This class of halogenated unsymmetric cyanine dyes is exemplified by the FUN-1 [2-chloro-4-(2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)- methylidene)-1-phenylquinolinium iodide] stain, a membrane-permeant nucleic acid-binding dye that has been found to give rise to cylindrical intravacuolar structures (CIVS) in Saccharomyces cerevisiae. Biochemical processing of the dye by active yeasts yielded CIVS that were markedly red shifted in fluorescence emission and therefore spectrally distinct from the nucleic acid-bound form of the dye. The formation of CIVS occurred under both aerobic and anaerobic conditions and was highly temperature dependent. Treatment of yeasts with the nonmetabolizable glucose analog 2-deoxy-D-glucose reduced cellular ATP levels approximately 6-fold and completely inhibited CIVS formation. Under aerobic conditions, the formation of CIVS was abrogated by the cytochrome oxidase inhibitors azide and cyanide; however, the H+ transport uncoupler carbonyl cyanide m-chlorophenylhydrazone inhibited CIVS formation under both aerobic and anaerobic conditions. Depletion of cellular thiols, including glutathione, with millimolar concentrations of N-ethylmaleimide, iodoacetamide, or allyl alcohol completely inhibited CIVS production. Marked reduction in the formation of CIVS by ethacrynic acid and sulfobromophthalein, inhibitors of glutathione S-transferase, suggested that dye processing can involve enzyme-mediated formation of glutathione conjugates. The conversion of FUN-1 by S. cerevisiae was studied quantitatively by using several techniques, including fluorometry, flow cytometry, and wide-field and confocal laser scanning fluorescence microscopy.
منابع مشابه
In vitro Labeling of Neural Stem Cells with Poly-L-Lysine Coated Super Paramagnetic Nanoparticles for Green Fluorescent Protein Transfection
Background: The magnetic nanoparticle-based transfection method is a relatively new technique for delivery of functional genes to target tissues. We aimed to evaluate the transfection efficiency of rat neural stem cell (NSC) using poly-L-lysine hydrobromide (PLL)-coated super paramagnetic iron oxide nanoparticles (SPION). Methods: The SPION was prepared and coated with PLL as transfection agent...
متن کاملYel013p (Vac8p), an armadillo repeat protein related to plakoglobin and importin alpha is associated with the yeast vacuole membrane.
Proteins of the armadillo family are involved in diverse cellular processes in higher eukaryotes. Some of them, like armadillo, beta-catenin and plakoglobins have dual functions in intercellular junctions and signalling cascades. Others, belonging to the importin-alpha-subfamily are involved in NLS recognition and nuclear transport, while some members of the armadillo family have as yet unknown...
متن کاملImmunofluorescent protein detection in Western blotting
This report describes the detailed procedures for Western blot analysis using fluorescent antibodies. After electrophoresis and subsequent electroblotting, the fluorescent-labeled antibodies were visible upon ultraviolet illumination of the polyvinylidene fluoride (PVDF) membranes and could then be photographed to give an accurate record of the blots. Fluorescent labeling allows for photographi...
متن کاملInternalization of components of the host cell plasma membrane during infection by Trypanosoma cruzi.
Epimastigote and trypomastigote forms of Trypanosoma cruzi attach to the macrophage surface and are internalized with the formation of a membrane bounded vacuole, known as the parasitophorous vacuole (PV). In order to determine if components of the host cell membrane are internalized during formation of the PV we labeled the macrophage surface with fluorescent probes for proteins, lipids and si...
متن کاملدورگهسازی در محل؛ اصول و کاربردها : مقاله مروری
In situ hybridization (ISH) is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 63 7 شماره
صفحات -
تاریخ انتشار 1997